Estimation of Striped Bass Discards in the Multispecies Groundfish Fishery during the 2002 Fishing Year (May 2002 - April 2003)

Gary R. Shepherd

Recent Issues in This Series

03-09 Stock Assessment of Summer Flounder for 2003. By M. Terceiro. August 2003.
03-10 Comparison of Invertebrate Abundances in Four Bays of the Northeastern United States: Two Bays with Sparse Quahogs and Two Bays with Abundant Quahogs. By C.L. MacKenzie, Jr. August 2003.

03-11 Accuracy Enhancement of Microscope Enumeration of Picoplankter Aureococcus anophagefferens. By J.B. Mahoney, D. Jeffress, J. Bredemeyer, and K. Wendling. August 2003.

03-12 A Taxonomy of World Whaling: Operations, Eras, and Data Sources. By R.R. Reeves and T.D. Smith. August 2003.

03-13 Distribution of the Brown Tide Picoplankter Aureococcus anophagefferens in Western New York Bight Coastal Waters. By J.B. Mahoney, D. Jeffress, C. Zetlin, P.S. Olsen, H. Grebe, and J. Brooks. August 2003.

03-14 Assessment of the Gulf of Maine and Georges Bank Witch Flounder Stock for 2003. By S.E. Wigley, J.K.T. Brodziak, and L. Col. September 2003.

03-15 Estimates of the Number of Vessels and Quantity of Gear Deployed in the Lobster and Gillnet Fisheries in 1999 off the Northeast Coast of the United States. By K.D. Bisack. September 2003.

03-16 Report of the 37th Northeast Regional Stock Assessment Workshop (37th SAW): Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. [By Northeast Regional Stock Assessment Workshop No. 37.] September 2003.

03-17 Report of the 37th Northeast Regional Stock Assessment Workshop (37th SAW): Advisory Report. [By Northeast Regional Stock Assessment Workshop No. 37.] September 2003.

03-18 Estimates of Marine Mammal Bycatch in the Northeast (New England) Multispecies Sink Gillnet Fishery in 1996. By K.D. Bisack. September 2003.

04-01 Current Fisheries Research and Future Ecosystems Science in the Northeast Center: Collected Abstracts of the Northeast Fisheries Science Center's Eighth Science Symposium, Atlantic City, New Jersey, February 3-5, 2004. By D.L. Johnson, T.W. Finneran, B.A. Phelan, A.D. Deshpande, C.L. Noonan, S. Fromm, and D.M. Dowds. January 2004.

04-02 Salmon PVA: A Population Viability Analysis Model for Atlantic Salmon in the Maine Distinct Population Segment. By C.M. Legault. January 2004.

04-03 Report of the 38th Northeast Regional Stock Assessment Workshop (38th SAW): Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. [By Northeast Regional Stock Assessment Workshop No. 38.] January 2004.

04-04 Report of the 38th Northeast Regional Stock Assessment Workshop (38th SAW): Advisory Report. [By Northeast Regional Stock Assessment Workshop No. 38.] January 2004.

04-05 Proceedings of the Seventh Meeting of the Transboundary Resources Assessment Committee (TRAC), Woods Hole, Massachusetts, May 27-29, 2003. By W.J. Overholtz, TRAC chairman. [A report of Transboundary Resources Assessment Committee Meeting No. 7]. February 2004.

04-06 Stock Assessment of the Gulf of Maine - Georges Bank Atlantic Herring Complex, 2003. By W.J. Overholtz, L.D. Jacobson, G.D. Melvin, M. Cieri, M. Power, D. Libby, and K. Clark. February 2004.

04-07 Identification and Description of the Common Sponges of Jeffreys Ledge as an Aid in Field Operations. By K. McCarthy. April 2004.

04-08 Revised Procedures for Calculating Regional Average Water Properties for Northeast Fisheries Science Center Cruises. By D.G. Mountain, M.H. Taylor, and C. Bascuñán. April 2004.

Estimation of Striped Bass Discards in the Multispecies Groundfish Fishery during the 2002 Fishing Year (May 2002-April 2003)

by

Gary R. Shepherd
National Marine Fisheries Serv., Woods Hole Lab., 166 Water St., Woods Hole, MA 02543
U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Northeast Fisheries Science Center
Woods Hole, Massachusetts

Northeast Fisheries Science Center Reference Documents

This series is a secondary scientific series designed to assure the long-term documentation and to enable the timely transmission of research results by Center and/or non-Center researchers, where such results bear upon the research mission of the Center (see the outside back cover for the mission statement). These documents receive internal scientific review but no technical or copy editing. The National Marine Fisheries Service does not endorse any proprietary material, process, or product mentioned in these documents.

All documents issued in this series since April 2001, and several documents issued prior to that date, have been copublished in both paper and electronic versions. To access the electronic version of a document in this series, go to http://www.nefsc.noaa.gov/nefsc/publications/series/ crdlist. htm . The electronic version will be available in PDF format to permit printing of a paper copy directly from the Internet. If you do not have Internet access, or if a desired document is one of the pre-April 2001 documents available only in the paper version, you can obtain a paper copy by contacting the senior Center author of the desired document. Refer to the title page of the desired document for the senior Center author's name and mailing address. If there is no Center author, or if there is corporate (i.e., non-individualized) authorship, then contact the Center's Woods Hole Laboratory Library (166 Water St., Woods Hole, MA 02543-1026).

This document's publication history is as follows: manuscript submitted for review -- June 14, 2004; manuscript accepted through technical review -- June 14, 2004; manuscript accepted through policy review -- June 16, 2004; and final copy submitted for publication -- June 16, 2004. This document may be cited as:

Shepherd, G.R. 2004. Estimation of striped bass discards in the multispecies groundfish fishery during the 2002 fishing year (May 2002 - April 2003). Northeast Fish. Sci. Cent. Ref. Doc. 04-09; 15 p. Available from: National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.

Table of Contents

Overview 1
Tables
Table 1. Comparison of annual multispecies landings data between dealer and VTR records, 2002 4
Table 2. Multispecies otter trawl 2002 landings per month/area 5
Table 3. Multispecies sink gillnett 2002 landings per month/area 6
Table 4. Multispecies landings, landings in areas with observer coverage, landings on observed trips and observed striped bass discards for May to December 2002 7
Table 5. Ratios of striped bass discards to multispecies landings applied to otter trawl multispecies groundfish landings, 2002 8
Table 6. Ratios of striped bass discards to multispecies landings applied to the sink gillnet multispecies groundfish landings, 2002 9
Table 7. Estimates of striped bass discards from otter trawl multispecies groundfish fishery, 2002, by month and statistical area 10
Table 8. Estimates of striped bass discards from sink gillnet multispecies groundfish fishery, 2002, by month and statistical area 11
Figures
Figure 1. NEFSC statistical areas 12
Figure 2. Distribution of striped bass during NEFSC 1973-2003 Winter, Spring and Autumn Bottom Trawl Surveys, northern areas 13
Figure 3. Distribution of striped bass during the NEFSC 1973-2003 Winter, Spring and Autumn Bottom Trawl Surveys, south 14
Figure 4. Frequency of striped bass weight per haul in observed hauls of the multispecies groundfish fishery, May-December 2002 15

OVERVIEW

Estimation of discards in commercial fisheries is generally dependent on a subset of information collected by at-sea observations, which is then expanded to the total fishery. The method of expansion depends on the type of fishery. General methods for expansion include use of the ratio of discard weight of species A to kept weight of species $A\left(D_{\text {spp a }} / K_{\text {spp a }}\right)$; the ratio of discard weight of species A to the aggregate kept weight of other species ($D_{\text {spp }} / K_{\text {agg }}$); or the ratio of discard weight of species A per unit of fishing effort. For striped bass fisheries which are not legal in federal waters, estimation of discards based on discard to kept ratio is not appropriate. Estimation of discards based on using a fishing effort ratio is difficult because the duration of commercial fishing trips varies among fisheries and ports, and measurement of effective effort is difficult to quantify consistently. Therefore, the most appropriate estimator for striped bass discards in the multispecies groundfish fishery is the ratio of striped bass discards to aggregate kept weight of species targeted by the fishery.

A simple ratio of cumulative discard to aggregate kept weight on observed multispecies groundfish trips is not appropriate due to seasonal and geographic variations in multispecies landings between Maine and North Carolina. To account for this variability, the ratios were stratified by month and statistical area. Statistical area information (Figure 1) for landings was only available from vessel logbook data (VTR data). All trips reporting landing of multispecies in the 2002 VTR logbook database were initially included. Species landed weight was summed within trip, then across trips by month, 3-digit statistical area and gear type. The data were limited to otter trawl and sink gillnets since most of the multispecies groundfish observer trips were made on vessels using these gear types; these gear types are also the most likely to capture striped bass. The VTR results were compared to the reported dealer landed weight data for species comprising the multispecies group. With the exception of white hake (which are landed in a variety of configurations, e.g. headed, or gutted) and halibut (which comprise a very small \% of the total), the VTR data averaged 5% less than weighout data (Table 1). Therefore, the VTR landings were adjusted upward by 5% to account for all landings.

Monthly landings that did not have area reported were re-distributed based on proportion of landings within each area. The 2002 VTR and observer data sets were subset to May through December to correspond to the fishing year beginning May $1^{\text {st }}$.

The observer data consist of haul specific information from trips targeting multispecies groundfish. The aggregate weight of multispecies groundfish kept per haul was summed across trip, gear, area and month. The data were also limited to sink gillnet and otter trawl gear. In addition, the weight of striped bass discarded was summarized by month, area and gear type. The data were insufficient to stratify at any finer geographic level than statistical area. A ratio of striped bass discards to aggregate landed weight of the multispecies complex was then calculated by month, area and gear. Observer data for the period January to April 2003 contained no record of striped bass caught or discarded; therefore the expanded estimate of striped bass discarded by the multispecies groundfish fishery in these months was zero (0). VTR reported landings from cells (month, area, gear) with observer coverage accounted for 89% of total landings in the otter trawl fishery and 73% from sink gillnets (Table 2 and 3). A monthly summary of landings and observed striped bass discards is provided in Table 4.

In cells (gear, month, area groups) with observer coverage (Table 5 and 6), the discard ratio was applied to expanded VTR aggregate landings data. In cells with no observer coverage for the multispecies fleet, a ratio for the general geographic area was applied. Areas were grouped as follows: Gulf of Maine (511-515); Rhode Island to the Great South Channel (521,526-539); western Georges Bank $(522,525)$; eastern Georges Bank (542-543,551-562) ; Long Island south (611 and higher). An overall ratio for an area group was calculated as the sum of observed striped bass discards in the group/sum of observed multispecies landings within the same group. The resulting ratio was applied to VTR landings for each area in the group (Tables 5 and 6). The resulting striped bass discard estimates (Table 7 and 8) were summed across cells by gear type, with the assumption of 100% discard mortality in both gear types.

The result was a total of $289,808 \mathrm{lbs}$ of striped bass discards in the multispecies groundfish fishery: 287,019 lbs. from otter trawls in May-December 2002 (Table 7); 2,789 lbs from sink gillnets in May-December 2002 (Table 8); and no discards during January to April for either gear. Beginning in June-July, there appears to be a north to
south progression of striped bass discards in the trawler fleet. The majority of discards occurred in statistical area 521, which corresponds to the Great South Channel. Discards of striped bas in September and October in Great South Channel accounted for 84% of the total annual estimated trawl discards of bass in the multispecies groundfish trawl fishery. The NEFSC research vessel bottom trawl survey data (Figure 2-3) indicate that the Channel has a seasonal concentration of striped bass (Figure 2), particularly in the autumn when migrating bass spatially overlap with spawning Atlantic herring.

This analysis was intended to examine striped bass discards in the multispecies groundfish fishery. Striped bass encounters within this fishery are a relatively rare event (Figure 4). However, on occasion seasonal/geographic aggregations of striped bass result in high levels of discards. Since statistical area was the lowest resolution for geographic stratification, discards may actually be over-estimated for some areas. Expansion by all landings within broad areas may encompass groundfishing locations which are not in the migratory pathway of striped bass and therefore unlikely to result in striped bass discards. In contrast, discards may also be under-estimated in areas with limited or no observer coverage, such as inshore locations where the majority of the striped bass population occur. Since the analysis did not include all fisheries potentially discarding striped bass, the estimate should not be considered a total estimate of commercial striped bass discards. Nonetheless, striped bass discards in the multispecies groundfish fishery appear to be a localized, seasonal event.

Table 1. Comparison of annual multispecies landings data between dealer and VTR records, 2002

SPP	VTR data (lbs)	Dealer data (lbs)	Difference	
White Hake	$3,417,116$	$5,375,107$	$1,957,991$	36.4%
Halibut	13,497	19,177	5,680	29.6%
Cod	$23,272,122$	$24,526,821$	$1,254,699$	5.1%
Haddock	$14,178,191$	$14,585,618$	407,427	2.8%
Winter Flounder	$12,249,435$	$12,957,688$	708,253	5.5%
Am. Dab	$7,188,204$	$7,530,648$	342,444	4.5%
Witch Flounder	$6,618,393$	$7,028,857$	410,464	5.8%
Yellowtail Flounder	$11,208,085$	$11,740,027$	531,942	4.5%
Redfish	744,165	811,191	67,026	8.3%
Ocean Pout	26,168	26,741	573	2.1%
Pollock	$6,327,977$	$6,940,455$	612,478	8.8%
Total	$81,812,740$	$86,148,046$	$4,335,306$	5.0%

Table 2．Multispecies otter trawl 2002 landings per month／area．Cells with observer trips bolded，unobserved cells shaded．
Level of coverage indicated by area and month．

Statistical									Total	Observed		\％
Area	May	June	July	August	September	October	November	December	landed	Cells		verage
459	52，346								52，346		F	0\％
462					12，469				12，469		－	0\％
464					31，712			19，430	51，142		F	0\％
465							1，275	55，020	56，295		F	0\％
511	31，376	7，031	28，959	19，994	37，247			14，762	139，368			0\％
512	88，030	44，227	71，724	32，232	119，566	62，574	104，023	102，947	625，324	－103，956		17\％
513	165，946	506，857	739，739	331，569	220，871	309，380	395，400	491，005	3，160，768	「 2，487，965		79\％
514	451，303	1，188，863	1，091，242	762，962	834，044	391，870	556，486	1，916，624	7，193，394	－7，193，394		100\％
515	162，849	247，964	239，116	261，685	252，429	250，550	212，731	399，048	2，026，372	－ $1,778,408$		88\％
522	1，056，557	1，358，446	733，153	814，448	998，212	544，816	636，632	531，254	6，673，517	6，673，517		100\％
525	866，791	126，953	39，307	76，497	51，420	10，430	154，407	279，029	1，604，834	「 1，349，964		84\％
521	463，535	1，317，813	1，798，722	1，955，419	2，585，421	2，367，103	1，092，952	1，179，307	12，760，271	「12，760，271		100\％
526	307，014	44，917	99，268	26，673	48，922		55，477	20，060	602，331	481，819		80\％
534							972		972		F	0\％
537	25，709	144，220	78，561	15，744	18，670	73，110	22，171	269，410	647，596	117，489		18\％
538	12，933	942		285	20，058	31，717	2，701		68，636		F	0\％
539	101，568	60，498	24，369	11，919	4，731	28，230	68，775	125，672	425，762	97，005		23\％
542	1，020		1，990	74		447	8，698	22，880	35，109		－	0\％
543	23，095	66，892	56，433			32，096			178，516		－	0\％
561	1，564，518	268，354	211，382	267，880	68，241	143，722	264，489	128，984	2，917，571	2，381，337		82\％
562	1，297，647	1，599，972	533，204	61，126	91，187	3，399	85，462	376，795	4，048，792	3，896，479		96\％
611	166，063	67，358	4，834	797	893	2，922	9，433	11，841	264，140	9，433		4\％
612	78，344	7，595	15，325	5，979	21，192	2，634	15，084	16，514	162，667	7，595		5\％
613	82，019	16，934	30，505	4，130	32，356	21，892	19，202	122，409	329，445	19，202		6\％
614							384	527	911		F	0\％
615	2，221		1，995						4，216			0\％
616	582		483		420	1，712	8，681	27，132	39，010		$\stackrel{\rightharpoonup}{*}$	0\％
621					3	16			19		F	0\％
624							1，030		1，030		－	0\％
635							210	211	421		F	0\％
Landed	7，001，465	7，075，834	5，800，310	4，649，411	5，450，064	4，278，622	3，716，675	6，110，861	44，083，242			
Observed Cells	6，195，922	5，472，688	5，556，858	2，202，896	2，392，468	4，122，611	3，551，445	5，322，106		「39，357，833		89\％
\％coverage	88\％	77\％	96\％	47\％	44\％	96\％	96\％	87\％				

Table 3. Multispecies sink gillnet 2002 landings per month/area. Cells with observer trips bolded, unobserved cells shaded.
Level of coverage indicated by area and month.

Statistical Area	May	June	July	August	September	October	November	December	Total landed	Observed Cells	\% coverage
463			22481						22,481		0\%
464	19349	17989							37,337		0\%
465					17382				17,382		0\%
512	1817	2579	3991	6327	6921	2105			23,740		0\%
513	18921	123263	300142	322440	223293	148927	215511	214572	1,567,068	1,209,373	77\%
514	630	248778	221606	182903	146778	135831	161876	330243	1,428,646	F $1,428,016$	100\%
515	84016	88944	128944	161234	192113	144404	91440	269187	1,160,281		0\%
522	3410	37376	23610	6848	92	2078			73,413		0\%
525		2333				1940			4,273		0\%
521	31010	548177	631290	451978	220982	177194	111435	173843	2,345,910	F $2,345,910$	100\%
526		3301	11146	2257	10451			64	27,218	2,257	8\%
534								320	320		0\%
537	1052	1235	570	1		784	165	7031	10,838		0\%
538	8089		3545	4241				1564	17,439	4,241	24\%
539	1293	141			245	89	33	11	1,811		0\%
542		368	3703					1697	5,768		0\%
561	58998	34663						7333	100,994		0\%
611			830						830		0\%
612	1616					26			1,642		0\%
613	1449		37		332			1373	3,190		0\%
614				2582	43	13			2,638		0\%
615	18			18	152				188		0\%
621					5				5		0\%
625	330	563	126				9		1,027		0\%
631							3	20	23		0\%
635		348		8		5		11	372		0\%
639				2667					2,667		0\%
Landed	231,996	1,110,059	1,352,019	1,143,504	818,788	613,397	580,472	1,007,268	6,857,503		
Observed Cells	31,010	796,956	980,224	963,819 ${ }^{\text {F }}$	591,053	461,953	273,312	718,658		F 4,989,797	73\%
\% coverage	13\%	72\%	73\%	84\%	72\%	75\%	47\%	71\%			

Table 4. Multispecies landings, landings in areas with observer coverage, landings on observed trips and observed striped bass discards for May to December 2002.

Otter Trawl

	```Total VTR landings (lbs)```	Landings (lbs) from areas covered by observed trips	Observed landings (lbs)	Observed   Striped bass discard (Ibs.)
May	7,001,465	6,195,922	151,764	
Jun	7,075,834	5,472,688	195,104	8
Jul	5,800,310	5,556,858	450,280	78
Aug	4,649,411	2,202,896	345,917	1,416
Sept	5,450,064	2,392,468	362,952	2,079
Oct	4,278,622	4,122,611	522,172	38,741
Nov	3,716,675	3,551,445	252,718	851
Dec	6,110,861	5,322,106	303,813	
sum	44,083,242	34,816,994	2,584,720	43,173

Sink Gillnet

	```Total VTR landings (lbs)```	Landings (lbs) from areas covered by observed trips	Observed landings (lbs)	Observed Striped bass discard (lbs)
May	231,996	31,010	5,515	
Jun	1,110,059	796,956	61,715	931
Jul	1,352,019	980,224	23,914	443
Aug	1,143,504	963,819	41,918	
Sept	818,788	591,053	32,525	
Oct	613,397	461,953	24,955	131
Nov	580,472	273,312	20,661	
Dec	1,007,268	718,658	18,173	
sum	6,857,503	4,816,984	229,376	1,505

Table 5. Ratios of striped bass discards to multispecies landings applied to the otter trawl multispecies groundfish landings, 2002. Bold numbers indicate cells with observer coverage; other discard ratios extrapolated from neighboring estimates. Lines show areas where ratios averaged; $*$ indicates no observer coverage.

Area	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
459	0.000							
462					0.000			
464					0.000			0.000
465							0.000	0.000
511	0.000	0.000	0.001	0.001	0.000			0.000
512	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000
513	0.000	0.000	0.004	0.000	0.000	0.000	0.000	0.000
514	0.000	0.000	0.000	0.002	0.000	0.002	0.000	0.000
515	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
522	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
525	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
521	0.000	0.000	0.000	0.006	0.011	0.090	0.006	0.000
526	0.000	0.000	0.000	0.001	0.011		0.000	0.000
534							0.006	
537	0.000	0.000	0.000	0.006	0.000	0.000	0.006	0.000
538	0.000	0.000		0.006	0.011	0.090	0.006	
539	0.000	0.000	0.000	0.006	0.011	0.000	0.006	0.000
542	0.000		0.000	*		0.000	0.000	0.000
543	0.000	0.000	0.000			0.000		
561	0.000	0.000	0.000	*	0.000	0.000	0.000	0.000
562	0.000	0.000	0.000	*	0.000	0.000	0.000	0.000
611	*	0.000	*	*	*	*	0.531	*
612	*	0.000	*	*	*	*	0.321	*
613	*	0.000	*	*	*	*	0.184	*
614							0.321	*
615	*		*					
616	*		*		*	*	0.321	*
621					*	*		
624							0.321	
635							0.321	*

Table 6. Ratios of striped bass discards to multispecies landings applied to the sink gillnet multispecies groundfish landings, 2002. Bold numbers indicate cells with observer coverage; other discard ratios extrapolated from neighboring estimates. Lines show areas where ratios averaged; * indicates no observer coverage.

Area	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
463			0.002					
464	*	0.004						
465					0.000			
512	*	0.004	0.002	0.000	0.000	0.001		
513	*	0.004	0.002	0.000	0.000	0.000	0.000	0.000
514	*	0.004	0.002	0.000	0.000	0.001	0.000	0.000
515	*	0.004	0.002	0.000	0.000	0.001	0.000	0.000
522	*	*	*	0.000	*	*		
525		*				*		
521	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
526		0.000	0.000	0.000	0.000			
534		0.000						0.000
537	0.000		0.000	0.000		0.000	0.000	0.000
538	0.000		0.000	0.000				0.000
539	0.000	0.000			0.000	0.000	0.000	0.000
542		*	*					*
561	*	*						*
611			*					
612	*					*		
613	*		*		*			*
614				*	*	*		
615	*			*	*			
621					*			
625	*		*				*	
631							*	*
635				*		*		*
639				*				

Table 7. Estimates (lbs.) of striped bass discards from otter trawl multispecies groundfish
fishery, 2002, by month and statistical area. * indicates no observer coverage.

Table 8. Estimates (lbs.) of striped bass discards from sink gillnet multispecies groundfish fishery,
2002, by month, statistical area. * indicates no observer coverage.

Figure 1. NEFSC statistical areas.

Figure 2. Distribution of striped bass during NEFSC 1973-2003 Winter, Spring and Autumn Bottom Trawl Surveys, northern areas.

Figure 3. Distribution of striped bass during the NEFSC 1973-2003 Winter, Spring and Autumn Bottom Trawl Surveys, south.
striped bass discards

Figure 4. Frequency of striped bass weight per haul in observed hauls of the multispecies groundfish fishery, May-December 2002.

Procedures for Issuing Manuscripts in the Northeast Fisheries Science Center Reference Document (CRD) Series

Clearance: All manuscripts submitted for issuance as CRDs must have cleared the NEFSC 's manuscript/abstract/ webpage review process. If any author is not a federal employee, he/she will be required to sign an "NEFSC Release-of-Copyright Form." If your manuscript includes material lifted from another work which has been copyrighted, then you will need to work with the NEFSC's Editorial Office to arrange for permission to use that material by securing release signatures on the "NEFSC Use-of-Copyrighted-Work Permission Form."

Organization: Manuscripts must have an abstract and table of contents, and - if applicable - lists of figures and tables. As much as possible, use traditional scientific manuscript organization for sections: "Introduction," "Study Area"/ "Experimental Apparatus," "Methods," "Results," "Discussion" and/or "Conclusions," "Acknowledgments," and "Literature/References Cited."

Style: The CRD series is obligated to conform with the style contained in the current edition of the United States Government Printing Office Style Manual. That style manual is silent on many aspects of scientific manuscripts. The CRD series relies more on the CBE Style Manual. Manuscripts should be prepared to conform with these style manuals.

The CRD series uses the American Fisheries Society's guides to names of fishes, mollusks, and decapod crustaceans, the Society for Marine Mammalogy's guide to names of marine mammals, the Biosciences Information Service's guide to serial title abbreviations, and the International Standardization Organization's guide to statistical terms.

For in-text citation, use the name-date system. A special effort should be made to ensure that all necessary bibliographic information is included in the list of cited works. Personal communications must include date, full name, and full mailing address of the contact.

Preparation: Type a clean/neat, single-spaced version of the document. The document must be paginated continuously from beginning to end and must have a "Table of Contents." Begin the preliminary pages of the document always the "Table of Contents" - with page "iii." Begin the body of the document - normally the "Introduction" with page " 1 ," and continuously paginate all pages including tables, figures, appendices, and indices. You can insert blank pages as appropriate throughout the document, but account for them in your pagination (e.g., if your last figure ends on an odd-numbered/right-hand page such as " 75 ," and if your next page is the first page of an appendix, then you would normally insert a blank page after the last figure, and paginate the first page of the appendix as " 77 " to make it begin on an odd-numbered/right-hand page also). Forward the final version to the Editorial Office as both a paper copy and electronically (i.e., e-mail attachment, 3.5-inch floppy disk, high-density zip disk, or CD). For purposes of publishing the CRD series only, the use of Microsoft Word is preferable to the use of Corel WordPerfect.

Production and Distribution: The Editorial Office will develop the inside and outside front covers, the inside and outside back covers, and the title and bibliographic control pages (pages " i " and " ii ") of the document, then combine those covers and preliminary pages with the text that you have supplied. The document will then be issued online.

Paper copies of the four covers and two preliminary pages will be sent to the sole/senior NEFSC author should he/she wish to prepare some paper copies of the overall document as well. The Editorial Office will only produce four paper copies (i.e., three copies for the NEFSC's libraries and one copy for its own archives) of the overall document.

A number of organizations and individuals in the Northeast Region will be notified by e-mail of the availability of the online version of the document. The sole/senior NEFSC author of the document will receive a list of those so notified.

Publications and Reports of the

 Northeast Fisheries Science CenterThe mission of NOAA's National Marine Fisheries Service (NMFS) is "stewardship of living marine resources for the benefit of the nation through their science-based conservation and management and promotion of the health of their environment." As the research arm of the NMFS's Northeast Region, the Northeast Fisheries Science Center (NEFSC) supports the NMFS mission by "planning, developing, and managing multidisciplinary programs of basic and applied research to: 1) better understand the living marine resources (including marine mammals) of the Northwest Atlantic, and the environmental quality essential for their existence and continued productivity; and 2) describe and provide to management, industry, and the public, options for the utilization and conservation of living marine resources and maintenance of environmental quality which are consistent with national and regional goals and needs, and with international commitments." Results of NEFSC research are largely reported in primary scientific media (e.g., anonymously-peer-reviewed scientific journals). However, to assist itself in providing data, information, and advice to its constituents, the NEFSC occasionally releases its results in its own media. Currently, there are three such media:

NOAA Technical Memorandum NMFS-NE -- This series is issued irregularly. The series typically includes: data reports of longterm field or lab studies of important species or habitats; synthesis reports for important species or habitats; annual reports of overall assessment or monitoring programs; manuals describing program-wide surveying or experimental techniques; literature surveys of important species or habitat topics; proceedings and collected papers of scientific meetings; and indexed and/or annotated bibliographies. All issues receive internal scientific review and most issues receive technical and copy editing.

Northeast Fisheries Science Center Reference Document -- This series is issued irregularly. The series typically includes: data reports on field and lab studies; progress reports on experiments, monitoring, and assessments; background papers for, collected abstracts of, and/or summary reports of scientific meetings; and simple bibliographies. Issues receive internal scientific review, but no technical or copy editing.

Resource Survey Report (formerly Fishermen's Report) -- This information report is a quick-turnaround report on the distribution and relative abundance of selected living marine resources as derived from each of the NEFSC's periodic research vessel surveys of the Northeast's continental shelf. There is no scientific review, nor any technical or copy editing, of this report.

OBTAINING A COPY: To obtain a copy of a NOAA Technical Memorandum NMFS-NE or a Northeast Fisheries Science Center Reference Document, or to subscribe to the Resource Survey Report, either contact the NEFSC Editorial Office (166 Water St., Woods Hole, MA 02543-1026; 508-495-2228) or consult the NEFSC webpage on "Reports and Publications" (http://www.nefsc.noaa.gov/ nefsc/publications/).

[^0]
[^0]: ANY USE OF TRADE OR BRAND NAMES IN ANY NEFSC PUBLICATION OR REPORT DOES NOT IMPLY ENDORSEMENT.

